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Abstract—RGB-D Salient Object Detection (SOD) aims to
segment the most prominent areas and objects in a given pair of
RGB and depth images. Most current models adopt a dual-stream
structure to extract information from both RGB and depth
images. However, this leads to an exponential increase in the
number of parameters and computations in the model. Moreover,
the discrepancy between RGB pretrained and the 3D geometric
relationships in depth maps present a challenge for the encoder
in capturing spatial structural details. These issues impact the
model’s accuracy in locating salient objects and distinguishing
edge details. To address these, we propose a novel early feature
fusion network, named FasterSal, which enables more efficient
RGB-D SOD. FasterSal uses a single stream structure to receive
RGB images and depth maps, extracting features based on the 3D
geometric relationships in the depth map while fully leveraging
the pretrained RGB encoder. This approach effectively avoids the
inconsistencies between depth modality and the RGB pretrained
encoder. It also significantly reduces the number of network pa-
rameters while maintaining efficient feature encoding capabilities.
To achieve finer edge learning, the detail-aware loss and texture
enhancement module are introduced. These modules are designed
to extract latent details in high-frequency component features
and to enhance the edge learning capability of the model using
distance information. Experimental results on several benchmark
datasets confirm the effectiveness and superiority of our method
over the state-of-the-art approaches, achieving a good balance
between performance and speed with only 3.4 million parameters
and a CPU operating speed of 63 FPS. Code and results available
at: https://github.com/zhangjinCV/FasterSal.

Index Terms—Saliency detection, RGBD images, single-stream,
real-time segmentation, detail awareness.

I. INTRODUCTION

SALIENT object detection (SOD) is a crucial computer
vision task that focuses on identifying and segmenting the

most prominent object or objects within an image. It disregards
subtle associations between similar object classes and instead
concentrates on the most visually striking elements, aligning
with principles of human visual perception. SOD finds appli-
cations in various domains, including semantic segmentation
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Fig. 1. The comparison between our methods FasterSal and existing
methods in terms of parameters, accuracy and speed. The metrics F-measure
are calculated in the NLPR dataset [1]. Different colors indicate different
methods, and the size of the circle represents the speed of detection on CPU
environment.

[2, 3], image enhancement [4, 5], video compression [6], and
visual tracking [7–9].

Recent advancements in RGB-D salient object detection
methods [10–15] have shown superior performance over tra-
ditional RGB-based approaches. Chen et al. [16] proposed an
innovative method for RGB-D salient object detection, which
effectively integrates depth cues into the saliency detection
process. Their novel neural network architecture uses depth in-
formation to distinctly enhance the separation of salient objects
from their backgrounds, particularly in complex scenes. Sim-
ilarly, Pang et al. [17] introduced CAVER, a framework that
leverages context-aware analysis and entropy-based refinement
in RGB-D detection. This method excels in differentiating
salient objects from backgrounds in challenging environments,
where they often share similar features.

Despite the impressive performance of these models, the
development and application of RGB-D SOD technology still
face significant challenges. A major issue is how to strike
the best balance between detection effectiveness and speed.
Heavyweight models [14, 16, 18–24], though powerful, are
often impractical for real-world deployment due to their large
parameter sizes and high computational demands. This limi-
tation is evident, as illustrated in Fig. 1, where these models
perform well on high-end devices but struggle to deliver real-
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time performance on edge and mobile devices.
To achieve faster inference, researchers have proposed

more efficient RGB-D SOD methods. Zhou et al.’s “LSNet”
[25] employs a lightweight network design while introducing
spatial enhancement mechanisms to improve the detection
performance of salient objects. Wu et al.’s “MobileSal” [26]
notably simplified the process by fusing RGB with depth
information at the coarsest level, thereby bypassing the in-
tensive computations of low-level fusion. Pursuing efficiency,
Jin et al.’s “MoADNet” [27] involved using a compact encoder
for depth map, leading to a network that is both leaner and
less demanding computationally. However, these methods also
have some noteworthy issues: i) They use RGB pretrained
parameters to extract depth features directly, which is different
from the image input in RGB pretrained and results in the
destruction of the 3D geometry in the depth map; ii) During
the training process, mismatched pretrained parameters can
bring about significant changes in the model representation
distribution, thereby affecting refined details predictions; iii)
Compared to standard RGB methods, their dual-stream struc-
ture is effective, but it generates additional computational costs
and still impacts overall efficiency (shown in Fig. 1). In Fig.
2, we use RGB pretrained weights for feature extraction of
both RGB and depth images at low- and high-level. From the
figure, it is observed that the low-level features still retain rich
detail textures, while the high-level features from the depth
images completely fail to extract effective image semantics.
As mentioned in DFormer [28], the depth branches of existing
dual-branch RGBD models all adopt RGB pre-trained weights,
which severely affects the representation of depth information,
especially in lightweight model architectures, where there is a
lack of effective utilization of bimodal information. Moreover,
we posit that employing RGB pretrained weights for the
extraction of low-level features is effective and enhances the
capture of texture details, with specific experiments docu-
mented in Table V.

Fig. 2. Feature extraction of RGB and depth maps using RGB pretrained
weights. Redder CAMs indicate areas of greater concern to the model.

To address these issues, we propose an innovative architec-
ture named FasterSal, aimed at overcoming the challenges
faced by RGB-D salient object detection. Considering the
minimal contribution of RGB pretrained encoders to depth in-
formation and the parameter overhead of the dual-stream struc-
ture, we design a single stream encoder with 4-channel input to
simultaneously receive RGB images and depth maps. Unlike

previous dual-stream methods [26, 27], the interaction between
RGB and depth images is implemented within the same
encoder. This allows the RGB images to fully use the pre-
trained parameters as well as the 3D geometric relationships
in the depth maps, and also avoids the distribution fluctuation
problems caused by modality inconsistencies. Furthermore, we
introduce a Texture Enhancement Module (TEM) and Detail-
Aware Loss (DA Loss) to capture the high-frequency fine
textures and edges of objects. TEM enables the model to
focus more on high-frequency details. During training, DA
Loss improves the model’s edge learning capabilities, thereby
enhancing overall prediction quality. Finally, we introduce
the Object Awareness Module (OAM) and Attention-Based
Decoder (ABD). These modules provide valuable contextual
clues for smaller objects and seamlessly integrate structural
information extracted from depth features, achieving seamless
integration of information at different abstraction levels. Our
main contributions include:

• We present FasterSal, a powerful single-stream architec-
ture designed for RGB-D SOD. FasterSal uses a more
efficient interaction method to fuse RGB and depth
information, avoiding the problem of mismatch in the
encoding of 3D geometric relations in depth maps.

• We introduce a texture enhancement module and detail-
aware loss in FasterSal, which effectively balances the
model’s modeling of low-frequency semantics and high-
frequency details, and enhances the model’s handling of
object details from a distance-aware perspective, thus
enhancing the model’s edge learning capability.

• We evaluate the proposed FasterSal on 5 RGB-D SOD
datasets to demonstrate its comparable accuracy to heavy-
weight methods, along with more than a 2× efficiency
improvement compared to lightweight methods (63 FPS
vs. 31 FPS) and a smaller network size (3.4M vs. 5.0M).

II. RELATED WORK

A. RGB-D Saliency Detection

As a multimodal learning task, most existing RGB-D SOD
models [27, 29–34] primarily focus on efficient fusion of
multimodal features, achievable through implicit multimodal
feature aggregation or explicit modality contribution assess-
ment. With the advancement of RGB-D SOD, research efforts
in this domain can broadly be categorized into the early fusion
methods [35–37] and the cross-level middle-fusion methods
[26, 27, 31]. Furthermore, the domain of pure late fusion
methods [38, 39] remains underdeveloped due to inherent
noise in depth information. Compare to cross-level middle-
fusion methods, the early fusion one exhibits deficiencies in
feature interaction, often resulting in suboptimal performance.
However, early fusion methods are able to better leverage
the advantages of ImageNet pretrained backbones to extract
color and depth features effectively, thereby compensating for
deficiencies in individual grouping cues within color and depth
spaces. Importantly, the early fusion methods significantly
reduce the computational demands of the overall structure,
allowing the development of more lightweight models.
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Moreover, the utilization of depth information as super-
vised feedback signifies an innovative approach [26, 40].
This technique harnesses the feedback from depth information
to stimulate the model’s comprehension of the saliency of
distinct objects. In doing so, it indirectly tackles the formidable
challenge of proficient foreground-background segmentation
in pure RGB mode, a challenge exacerbated by low contrast.

B. Early Fusion RGB-D Saliency Detection
The early fusion approach in RGB-D saliency detection

begins by merging RGB images with depth maps. Subse-
quently, these fused bimodal images are fed into an encoding-
decoding architecture to accomplish feature extraction and
fusion. Zhang et al. [35] introduced a singular streaming archi-
tecture that exploits uncertainty for RGB-D saliency detection.
Fu et al. [36] adopted a dual-modality early fusion approach
wherein RGB images and depth maps are concatenated into
a novel dimension, deviating from a simplistic channel-wise
concatenation. Chen et al. [41] treated the dual-modal RGB-
D task as a 3D vision issue and harnessed 3D convolutions
to extract features from the amalgamated RGB and depth
images. Meanwhile, Zhao et al. [42] investigated the utilization
of pretrained ImageNet models for comprehensive feature
extraction from both RGB and depth modalities, incorporating
depth maps for intermediate feature supervision. Unlike the
aforementioned methods, FasterSal fully uses 3D geometric
relations while also thoroughly modeling the texture details
of objects. In generating accurate objects, it is able to better
outline their detailed textures.

C. Cross-level Middle-fusion RGB-D Saliency Detection
Cross-level middle-fusion approach remains the prevailing

methodology in current RGB-D SOD tasks. Piao et al. [43]
devised an effective depth refinement block, which employs
residual connections to comprehensively extract and fuse
multi-level complementary cues from both RGB and depth
images. Taking into account the intrinsic disparities between
RGB and depth data, Zhang et al. [44] proposed an asymmetric
dual-stream architecture for extracting RGB and depth infor-
mation. Pang et al. [17] integrated and enhanced information
from different modalities through an innovative Transformer
architecture for cross-modal perspective blending to improve
the performance of salient object detection. Jin et al. [45]
considered the impact of noisy depth information on the final
results and constructed an innovative complementary depth
network to fully harness the salient depth features within RGB-
D SOD. To further obtain detailed structural features, Vision
Transformers [46] have been extensively applied in RGB-D
SOD tasks. Tang et al. [47] used high-resolution Transformers
to extract richly detailed and globally structured features from
both RGB and depth data. Cong et al. [48] combined CNN
with Transformers to complement bimodal details and global
information.

D. Lightweight RGB-D Saliency Detection
The substantial parameter count, high computational de-

mands, and significant inference latency of heavyweight RGB-
D SOD models have constrained their practical applicability in

real-world settings, particularly on resource-constrained edge
devices. In response to this challenge, several approaches have
been dedicated to constructing lightweight models to enable
genuine practical applications. Wu et al. [26] leveraged Mo-
bileNet V2 as the backbone network and achieved lightweight
detection by fusing deep features from both RGB and depth
modalities. Their proposed MobileSal, when running on a
2080TI GPU, achieves a remarkable frame rate of 450 FPS.
Jin et al. [27] took into account the complexity of dual-
stream structures and employed a simpler encoder for depth
information extraction, followed by multi-scale decoders for
the fusion and decoding of bimodal features. Zhou et al. [25]
introduced a spatial enhancement mechanism to improve the
pairs so that they can effectively distinguish salient objects
from the background when dealing with thermal imaging
images with complex backgrounds and variable temperature
distributions.

Despite the preliminary developments in lightweight RGB-
D models, several challenging issues persist. Firstly, the lack
of sufficiently robust lightweight architectures hinders their
ability to match the performance of heavyweight models.
Secondly, these models still rely on a dual-stream structure,
making it difficult to further compress the model’s size and
achieve faster inference speeds. Lastly, these models treat deep
and low-level features in the same manner, disregarding the
characteristics of different features, which makes it challeng-
ing to extract object textures from low-level features and object
structures from deep-level features.

III. PROPOSED METHOD

In this section, we present the FasterSal architecture, a
tailored solution for RGB-D SOD. FasterSal employs an
encoding-decoding architecture with a single stream, designed
to deliver superior performance in salient object detection.
As depicted in Fig. 3, our method combines RGB and depth
modalities to a 4-channel bimodal input to generate multi-
level feature representations from the backbone. These features
are then refined by the FasterSal middleware, enhancing both
deep and low-level characteristics. Subsequently, the refined
features undergo multi-level fusion in the attention-based
decoder, resulting in accurate salient object segmentation with
rich detail and precise localization. Additionally, FasterSal in-
corporates selective reinforcement mechanisms during training
to improve object edge pixel and small object detection. In the
following sections, we provide a detailed exposition of each
component within our structure.

A. Encoder
To effectively accommodate the 4-channel bimodal input

data, we have adapted the MobileNetV3 input layer, ensur-
ing seamless integration of all four channels. Furthermore,
leveraging pretrained parameters from ImageNet, we initialize
the MobileNetV3 backbone and the extra fourth channel. This
initialization strategy harnesses the knowledge embedded in
the pretrained model, facilitating the early fusion of RGB and
depth features in a high-dimensional space. With input dimen-
sions represented as R3×H×W , we extract five hierarchical fea-
tures denoted as {F i|i = 1, 2, 3, 4, 5} with corresponding sizes
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Fig. 3. Overall pipeline of the proposed FasterSal. This diagram illustrates an end-to-end encoder-decoder architecture, with the encoder tasked with feature
extraction across four hierarchical levels. Following channel compression, these features are directed into the refinement middleware modules TEM and OAM.
Ultimately, they are decoded by the ABD modules to produce the ultimate saliency map. The custom-designed DA loss function is specifically crafted to
amplify feedback related to object specifics and small-scale objects.

[H2i ,
W
2i ]. Notably, features F 1, F 2, and F 3 are categorized as

low-level features due to their larger dimensions, encapsulating
a wealth of texture details. Conversely, features F 4 and F 5

are distinguished as deep-level features for their ability to
encompass advanced global class information within smaller
dimensions. In alignment with established practices in the
field [26, 43], feature F 1 is omitted due to its computational
overhead and marginal performance contribution. Furthermore,
all encoded features are adjusted to 32 channels using 3×3
convolution to ensure uniformity across multi-level features.

B. Textural Enhancement Module

In the context of pixel-wise segmentation tasks, the role
of rich textures within low-level features is paramount. These
textures are not only instrumental in assisting the model in
foreground-background discrimination during decoding but
also in the precise recovery of intricate object details. Nonethe-
less, the presence of complex backgrounds and the interference
of low-frequency noise can disrupt the model’s ability to
discern object texture details accurately. Taking inspiration
from denoising techniques like mean filtering, we introduce the
texture enhancement module (TEM) to amplify sharp noise,
thereby accentuating textures within low-level features.

Our approach commences with a 7×7 pooling operation that
serves to smoothen the features while highlighting their low-
frequency components. Subsequently, we perform a pixel-wise
subtraction operation between the smoothed features and the
original ones. This operation effectively exposes the sharp

high-frequency information concealed within complex low-
frequency components, bringing out object texture details, as
described in Equ. 1:

F ihf = |F i − Up(Pool(F i))|, (1)

where F i means the i-th feature extracted from the backbone
and i ∈ {2, 3}. Up(·) is the upsampling operation. Pool(·)
represents the average pooling operation with size 7×7.

To mitigate any potential information loss arising from the
subtraction operation, we reintegrate the original features and
the high-frequency information using an additive approach:

F ifuse = F ihf + Conv(Conv(F i) + F i), (2)

where Conv(·) means a convolution layer with 3×3 filters.
The fused features are then input into the AFF module

[49], where spatial and channel-wise weights are thoughtfully
applied:

F item = AFF (F ifuse), (3)

This culminates in the generation of texture-enhanced fea-
tures, processed by TEM. The entire process can be seen in
Fig. 4.

C. Object Awareness Module

In the SOD task, we focus on enhancing precise object
localization and abstract semantic understanding through an
efficient Object Awareness Module (OAM). Our approach
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Fig. 4. The processing flow of input features by the texture enhancement
module. For input feature F i, we enhance high-frequency features through
7×7 average pooling and pixel-level subtraction, extract features via convolu-
tions with small receptive fields, and finally enhance low-level feature details
through pixel-level addition and AFF attention.

involves a novel structural design for deep-level feature pro-
cessing. It combines convolutional layers with varying dilation
rates and integrates the AFF module to analyze multi-level
receptive fields, extracting scale and rotation-invariant features
for improved object-specific information extraction.

The AFF module effectively addresses information loss
that can occur with larger dilation rates by ensuring selec-
tive feature extraction within extensive receptive fields. We
then synthesize information from diverse receptive fields and
perform channel-wise concatenation to obtain comprehensive
multi-scale features. This step enriches our understanding of
images by offering insights from different scales and object
perspectives:

F ims = concat(AFF (DjConv(F
i)),

AFF (Up(GAP (F i)))) for j = 2, 3, 4
(4)

where F i means the i-th feature extracted from the backbone
and i ∈ {4, 5}. DjConv(·) means a 3×3 dilation convolution
layer with the dilation rate of j. GAP (·) is the global
average pooling operation. Concat(·) means the channel-wise
concatenation.

Additionally, we use the AFF module to filter and retain
the most relevant features. Finally, we employ a residual
connection strategy to merge the original input features with
the multi-scale features. This fusion ensures that the Object
Awareness Module learns rich information and preserves es-
sential details:

F ims = Conv(AFF (F ims)), (5)

F ioam = F i + F ims. (6)

This design empowers our model to fully perceive objects in
images and improve the precision of localizing salient objects
within their context. The entire process can be seen in Fig. 5.

D. Attention-based Decoder

Our framework employs two key modules, TEM and OAM,
to capture fine details in low-level features and deep se-
mantic information in high-level features, enhancing image

Fig. 5. The processing flow of input features by the object awareness
module. For input feature F i, we obtain target information under different
receptive fields using convolutions with various dilation rates and global
average pooling, and perform channel-level filtering through the AFF module.
Finally, we retain the details of the original features without loss through 1×1
convolution and residual connections.

understanding. TEM focuses on texture and minute details,
while OAM extracts deep semantics. To fully and effectively
leverage these features at different levels, our decoder, referred
to as ABD (as illustrated in Fig. 6), plays a pivotal role in
decoding tasks. Let’s take the first ABD in the decode branch
as an example to describe its working principle in detail.
In this ABD, we initially perform convolutional operations
between the deepest feature representation (denoted F 5

oam) and
low-level contextual features (including F 2

tem and F 3
abd) to

obtain higher-level feature representations. Furthermore, we
transform the deepest feature representation into a single-
channel pseudo-salient map, which is then multiplied and
added to the other two contextual features. This clever feature
fusion strategy enables us to fully exploit the rich semantic
information from deep-level features during decoding while
enhancing the texture details of the decoded features:

F 5
sal = Conv(F 5

oam), (7)

F 2
mul = F 5

sal × Conv(F 2
tem) + Conv(F 2

tem), (8)

F 3
mul = F 5

sal × Conv(F 3
abd) + Conv(F 3

abd). (9)

Next, we concatenate the fused contextual features at the
channel-wise and output them through the AFF module. This
selectively emphasizes relevant spatial locations and channel
dependencies, thereby enhancing the discriminative power of
the decoded features. Finally, we subject the features passed
through the AFF module to convolutional operations and
generate the ultimate comprehensive representation:

F 2
abd = Conv(AFF (Concat(F 2

mul, F
3
mul))) (10)

This representation captures detailed texture information or
deep semantic content, providing robust support for decoding
tasks.

E. Supervision

In recent SOD tasks, the precise delineation of object
edges plays a pivotal role in achieving better performance.
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Fig. 6. The processing flow of input features by the attention-based decoder.
We take the first ABD in the decode branch as an example, and the input
features are deepest feature F 5

oam, contextual features F 2
tem and F 3

abd.

Recognizing this, Wei et al. [50] introduced a novel approach
to enhance the model’s ability to learn object edges effectively.
Their technique utilizes a distance transform function to par-
tition the ground truth into two distinct maps: the detail map
and the body map. This division allows the model to focus
separately on acquiring knowledge related to object details and
major structural components, thereby fortifying the learning of
object edge pixels. Specifically, detail maps are generated by
performing a distance transform operation that computes the
distance from each foreground pixel to the nearest background
pixel. Notably, pixels located further from the center of the
foreground object are assigned higher weights in these detail
maps. This weight assignment prioritizes the learning of fine-
grained object characteristics, a crucial aspect of object edge
definition. However, one of the challenges in utilizing detail
maps with continuous values lies in their integration into
classification models effectively. To address this challenge and
further optimize model performance, we propose a different
approach: employing detail maps with continuous values as
weight factors and subsequently incorporating these weights
into common loss functions.

Algorithm 1: Distance Transform
input : Binary GT
output: Distance Weight (DW)

GTfg, GTbg ← GT ;
DW = [GT.shape];
for pxy in GTfg do

k = 1;
while
GT [x− k : x+ k+1, y− k : y+ k+1] == k2 do
k = k + 2;

DW [x, y] =
√
k2 × 2;

DW = GT −Norm(DW );
return DW

In this work, we introduce the concept of a detail-aware
(DA) loss function, designed to refine the learning process
further. We begin with the intersection over union (IoU) loss

function as our baseline. The first step involves performing a
distance transform on ground truth (GT) using Algorithm 1,
resulting in the derivation of detail weights (DW).

In Algorithm 1, p(x,y) represents the pixel in foreground
of GT. Norm(·) normalises the values in DW to [0-1]. The
size of k indicates the distance of the current pixel from the
nearest background pixel.

Additionally, to provide enhanced supervision for learning
smaller objects, we perform a scale transformation tailored to
the size of the foreground region within each input batch of
GTs. This process yields scale weights (SW) for individual
ground truth samples.

SWn = 1+
1

sum(Gnxy)/max(sum(Gnxy))
,

for n = 1, 2, ..., N

(11)

where n represents the sample in a batch, sum(·) and max(·)
are functions that sum and find the maximum value of all batch
samples, respectively, and N is the total number of samples
in a batch.

Finally, we combine the detail weights with the scale
weights to obtain the ultimate weight, denoted as wxy =
SW × DW . This weight factor is integrated into the com-
putation of the IoU loss, forming an integral part of the DA
loss. The DA Loss formula is expressed as follows:

Lda = 1−
∑H,W
x,y=1 (Gxy ∗ Pxy) ∗ (α+ βwxy)∑H,W

x,y=1

(
Gxy + Pxy −Gsxy ∗ Pxy

)
∗ (α+ βwxy)

,

(12)

where G represents the ground truth. P signifies the predicted
saliency map. Hyperparameters α and β balance the contribu-
tion of IoU and the weight factor, and the choice of suitable
values for these parameters is discussed in Section IV-E1. The
weight factor wxy is a product of DW and SW, with SW
determined based on the total sum of foreground pixels for
each sample within an input batch of data. Smaller foreground
surfaces, which correspond to smaller salient objects, result in
larger weights. Furthermore, these SWs are normalized to the
[1-2] range.

Following [27, 50–52] and most existing methods, we
use multi-level supervision to guide the model. Specifically,
features F iabd, i ∈ {2, 3, 4} and F 5

oam are fed into the ’Sal
Head’ consisting of a 3×3 convolution and Sigmoid activation,
to obtain saliency maps P isal, i ∈ {2, 3, 4, 5} for each layer.
The saliency map generated from feature F 2

abd serves as the
primary output, while the saliency maps obtained from other
features assist in the calculation of auxiliary losses. Since the
value of the auxiliary loss is larger than the dominant loss, we
assign them a smaller weight. The total loss is defined as:

Ltotal =

5∑
i=2

1

2i−2
Lda(P

i, G). (13)

IV. EXPERIMENTS

A. Datasets

We conduct experiments on five RGB-D datasets: NJU2K
(1985 image pairs) [53], NLPR (1000 image pairs) [1], SIP
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(929 image pairs) [32], DUT-RGBD (1200 image pairs) [43],
and STERE (1000 image pairs) [51]. These datasets encom-
pass a wide range of scenes and challenges, including diverse
indoor and outdoor environments, complex lighting conditions,
and varied human body postures, facilitating comprehensive
evaluations of salient object detection methods.

B. Evaluation Metrics

Following most existing methods [27, 54–59], we use four
standard evaluation metrics to comprehensively evaluate the
model’s performance: mean absolute error (M), E-measure
(Eφ), F-measure (Fβ), and S-measure (Sα). M evaluates the
mean absolute error between the ground truth and the predic-
tion, but it is more paranoid about small objects. Sα evaluates
the structural similarity between ground truth and prediction.
Fβ is the harmonic mean of precision and recall, and we
calculate the average F-measure across different thresholds.
Eφ leverages both image-level statistics and local pixel-level
statistics to assess binary saliency maps.

In addition to quantitative metrics on different datasets, we
conduct testing of each model against criteria to compare their
practical applicability. These criteria include performance met-
rics such as FPS and inference latency on both CPU and GPU,
as well as model’s parameters and computational requirements
(FLOPs). To ensure a fair comparison, we conduct tests under
identical conditions in both the CPU and GPU environments.
The CPU used is an Intel(R) Xeon(R) Gold 6240R, and the
GPU used is an NVIDIA GeForce RTX 3090. We use the
same code to evaluate all models, and the input dimensions
matched those specified in the original paper.

C. Implementation Details

In our experimental setup, we harness the computational
prowess of four NVIDIA Tesla V100 GPUs, each equipped
with 32GB of video memory. To enhance the robustness of
our model, we incorporate a variety of data enhancement
techniques during the training phase, which are in line with
established practices employed by existing models [40, 41].
These augmentation strategies encompass operations such as
random cropping, blurring, brightness adjustments, and image
flipping. Subsequently, these augmented images are resized to
dimensions of 256×256 pixels, making them suitable for input
into our model architecture. Throughout the training process,
we employ the Adam optimizer to iteratively update the model
parameters, configuring the weight decay with a value set at
0.01. Our training regimen spans a total of 400 epochs, with
a mini-batch size of 128. Remarkably, each round of training
only demands a mere 7 seconds. We initiate training with an
initial learning rate of 1.6e-2 and gradually reduce it using a
cosine annealing schedule until it converges to 1.6e-4 upon
completion of training.

D. Comparison with State-of-the-art Methods

We compare FasterSal with 16 state-of-the-art methods,
including the lightweight models MobileSal [26], MoADNet
[27], LSNet [25], and the heavyweight models CCAFNet [31],

DCMF [13], DQSD [60], CDNet [45], D3Net [32], A2dele
[39], DANet [42], S2MA [61], DMRA [43], MMCI [62],
TANet [63], CPFP [33], CAVER [17]. To ensure the fairness
of the test, we employ an identical set of verification codes,
which has been supplied by Jin et al. [27], to calculate the
metrics based on the result maps provided by the authors of
these methods.

1) Quantitative Comparison: Table I serves as a com-
prehensive quantitative comparison that sheds light on the
prowess of FasterSal when pitted against existing models,
encompassing both lightweight and heavyweight contenders,
across a spectrum of five diverse datasets. Compared to
heavyweight models such as CCAFNet, DCMF and CAVER,
FasterSal emerges as a formidable competitor, demonstrating
comparable performance on several datasets while notably
outperforming them on the NJU2K and NLPR datasets. A
standout accomplishment for FasterSal lies in its superior
performance in the Fβ metric, signifying heightened preci-
sion in foreground and background detection. Furthermore,
FasterSal achieves commendable results in the M , Sα, and
Eφ metrics. When juxtaposed with lightweight models like
MoADNet, MobileSal and LSNet, FasterSal not only excels
in terms of model performance but also manages to maintain
an edge in parameters, FLOPs, and resource efficiency. For
the sake of convenient comparison of the overall performance
of the model on the dataset, we rank the model based on four
evaluation metrics. From the ranking, it can be observed that,
compared to the existing heavyweight model CAVER, Faster-
Sal still maintains a very high comparability, for example, on
the NJU2K and DUT-RGBD datasets.

Additionally, we present a comprehensive evaluation of
existing RGB-D SOD models, offering insights into the trade-
off between model parameters and performance. In Fig. 7,
we provide visualizations depicting the relationship between
model parameters and key performance metrics, specifically
M , Fβ , Sα and Eφ. These metrics are computed as averages
across the five datasets employed in our study. An intriguing
observation emerges from these visualizations: heavyweight
models, characterized by a high number of parameters, tend
to excel in terms of performance metrics but often sacrifice
practical applicability due to their computational demands.
Conversely, lightweight models, designed for faster infer-
ence speed, frequently compromise accuracy. However, our
proposed FasterSal takes a nuanced approach by striking a
harmonious balance between these two extremes. It manages
to achieve both high-speed inference and exceptional precision
in the realm of RGB-D SOD.

2) Efficiency Comparison: A comparison of these models
in terms of efficiency is given in Table II to further demonstrate
the significant advantages of FasterSal in different hardware
environments. We conduct rigorous tests on these models
using an Intel(R) Xeon(R) Gold 6240R CPU and an NVIDIA
GeForce RTX 3090 GPU separately, while adhering to the
recommended input dimensions outlined in the paper. It is ev-
ident that the proposed FasterSal achieves the highest FPS (64
and 1900) and the lowest latency in CPU and GPU settings.
Compared to the runner-up MoADNet, FasterSal demonstrates
a remarkable performance improvement of 106.3% on GPU
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TABLE I
PERFORMANCE COMPARISON BETWEEN THE PROPOSED METHOD FASTERSAL AND THE STATE-OF-THE-ART LIGHTWEIGHT AND HEAVYWEIGHT

METHODS. ↓ (↑) MEANS THAT THE HIGHER (LOWER) IS BETTER. ‘RANK’ INDICATES THE AVERAGE RANKING ACROSS FOUR EVALUATION METRICS,
WITH OUR METHOD HIGHLIGHTED IN BOLD.

Method CPFP TANet MMCI DMRA S2MA DANet A2dele D3Net CDNet DQSD DCMF CCAFNet MoADNet MobileSal LSNet CAVER
OursPub &Year CVPR19 TIP19 PR19 ICCV19 CVPR20 ECCV20 CVPR20 TNNLS21 TIP21 TIP21 TIP22 TMM22 TCSVT22 TPAMI22 TIP23 TIP23

Params 69.5M 232.4M 241.7M 20.3M 86.6M 26.6M 30.1M 43.2M 32.9M 396.8M 51.0M 41.8M 5.0M 6.5M 5.39M 55.79M 3.4M
FLOPs 101.1G 372.9G 412.0G 25.6G 141.0G 66.1G 41.7G 55.1G 72.0G 812.6G 102.3G 76.6G 1.3G 1.58G 1.21G 21.86G 0.9G

Size 256.3M 885.4M 922.1M 77.5M 330.6M 101.8M 115.8M 164.6M 125.6M 1515.7M 224.8M 159.5M 19.3M 39.4M 32.7M 213.30M 13.5M

NJU2K

M ↓ 0.053 0.061 0.079 0.051 0.054 0.047 0.051 0.047 0.048 0.050 0.043 0.037 0.041 0.045 0.038 0.032 0.034
Fβ ↑ 0.837 0.844 0.813 0.872 0.838 0.859 0.874 0.863 0.866 0.860 0.847 0.897 0.892 0.848 0.899 0.874 0.906
Sα ↑ 0.878 0.878 0.859 0.886 0.894 0.897 0.869 0.900 0.885 0.899 0.910 0.910 0.906 0.896 0.911 0.920 0.908
Eφ ↑ 0.900 0.893 0.882 0.908 0.899 0.916 0.916 0.914 0.908 0.913 0.907 0.942 0.935 0.909 0.940 0.922 0.949

Rank↓ 15 16 17 12 14 7 110 6 12 9 8 2 5 10 2 4 1

NLPR

M ↓ 0.038 0.041 0.059 0.031 0.030 0.029 0.028 0.030 0.032 0.029 0.029 0.026 0.027 0.025 0.024 0.022 0.022
Fβ ↑ 0.818 0.795 0.729 0.855 0.848 0.870 0.878 0.858 0.848 0.841 0.849 0.881 0.874 0.874 0.883 0.895 0.902
Sα ↑ 0.884 0.886 0.855 0.899 0.915 0.915 0.896 0.911 0.902 0.916 0.922 0.922 0.915 0.919 0.918 0.929 0.920
Eφ ↑ 0.920 0.916 0.871 0.942 0.940 0.949 0.945 0.944 0.935 0.934 0.938 0.953 0.947 0.953 0.956 0.959 0.960

Rank↓ 15 16 17 13 11 7 8 10 14 12 8 4 6 5 3 1 2

SIP

M ↓ 0.064 0.075 0.086 0.088 0.058 0.054 0.070 0.063 0.076 0.065 - 0.054 0.058 0.058 0.049 0.043 0.049
Fβ ↑ 0.819 0.809 0.795 0.815 0.850 0.862 0.827 0.835 0.805 0.843 - 0.864 0.850 0.855 0.883 0.884 0.870
Sα ↑ 0.850 0.835 0.833 0.800 0.872 0.878 0.826 0.860 0.823 0.863 - 0.876 0.865 0.866 0.885 0.893 0.870
Eφ ↑ 0.899 0.894 0.886 0.858 0.911 0.916 0.887 0.902 0.880 0.900 - 0.916 0.911 0.908 0.927 0.927 0.929

Rank↓ 11 13 14 16 6 4 12 9 15 10 - 4 7 7 2 1 3

DUT-RGBD

M ↓ 0.099 0.093 0.113 0.048 0.043 0.047 0.042 0.097 0.048 0.072 0.036 0.038 0.031 0.041 - 0.029 0.030
Fβ ↑ 0.736 0.779 0.753 0.883 0.886 0.877 0.892 0.752 0.874 0.817 0.896 0.904 0.923 0.912 - 0.919 0.925
Sα ↑ 0.749 0.808 0.791 0.888 0.903 0.889 0.884 0.775 0.880 0.845 0.927 0.903 0.927 0.896 - 0.930 0.918
Eφ ↑ 0.814 0.866 0.855 0.927 0.935 0.925 0.929 0.847 0.918 0.889 0.944 0.944 0.959 0.940 - 0.955 0.958

Rank↓ 16 13 14 9 7 9 8 15 11 12 4 5 1 6 - 1 1

STERE

M ↓ 0.051 0.060 0.068 0.047 0.051 0.048 0.070 0.046 0.042 0.051 0.043 0.044 0.042 0.042 0.054 0.034 0.040
Fβ ↑ 0.830 0.835 0.829 0.867 0.831 0.841 0.825 0.856 0.873 0.839 0.839 0.869 0.868 0.851 0.854 0.872 0.875
Sα ↑ 0.879 0.871 0.873 0.886 0.890 0.892 0.826 0.899 0.896 0.892 0.910 0.891 0.898 0.901 0.871 0.914 0.888
Eφ ↑ 0.912 0.893 0.873 0.920 0.910 0.915 0.892 0.921 0.922 0.912 0.913 0.933 0.935 0.919 0.919 0.931 0.939

Rank↓ 14 15 16 9 13 11 17 7 4 11 8 5 3 5 12 1 1

Fig. 7. Illustration of the trade-off between the accuracy and efficiency of existing models and proposed FasterSal. Metrics M, Eφ, Fβ and Sα are the
average score of the five testing datasets.

Fig. 8. Visual comparison results between FasterSal and other state-of-the-art models in different difficult scenarios. The third row is GT (ground truth), the
fourth row is our result, and rows 5-8 are the comparative results. The first five columns have richer image details, the sixth and seventh columns represent
large-size objects, the eighth and ninth columns show cases with multiple objects, and the last five columns are cases with small objects.
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TABLE II
EFFICIENCY COMPARISON BETWEEN FASTERSAL AND EXISTING MODELS UNDER DIFFERENT HARDWARE CONDITIONS. WE USED THE SAME CPU AND
GPU ENVIRONMENTS TO TEST THE EFFICIENCY OF THESE MODELS, AND THE INPUT SIZE IS THE ONE RECOMMENDED BY THE ORIGINAL PAPER. OUR

APPROACH IS HIGHLIGHTED.

Method
Backbone Params FLOPs↓ FPS(CPU)↑ Latency(CPU)↓ FPS(GPU)↑ Latency(GPU)↓ Resolution

(type) (M) (G) (images/s) (ms) (images/s) (ms) (RGB&Depth)

DMRAICCV 19 VGG16 20.3 25.6 18 55.6 458 2.2 256×256
DANetECCV 20 VGG16 26.6 66.1 4 242.4 121 8.2 384×384
A2deleCV PR20 VGG16 30.1 41.7 8 122.1 238 4.2 256×256
CDNetTIP21 VGG16 32.9 72.0 4 205.4 126 7.9 224×224
CCAFNetTMM22 VGG16 41.8 76.6 4 218.5 107 9.3 224×224
CAVERTIP23 ResNet50 55.8 21.9 21 52.6 511 2.0 256×256
MoADNetTCSV T22 MobileNetV3 5.0 1.3 31 31.7 921 1.1 256×256
MobileSalTPAMI22 MobileNetV2 6.5 1.6 20 49.7 632 1.6 320×320
LSNetTIP23 MobileNetV2 5.4 1.2 28 35.2 899 1.2 224×224

Ours MobileNetV3 3.4 0.9 63 15.9 1900 0.5 256×256

and 103.2% on CPU, achieving more than a twofold increase
in efficiency while reducing the model size by 32% (3.4M
vs. 5M). When compared to heavyweight models, FasterSal
exhibits a speed increase of more than threefold. These re-
sults unequivocally affirm the outstanding effectiveness and
reliability of single-stream RGB-D models in enabling faster
real-world applications.

3) Visual Comparison: We present a visual comparison of
FasterSal against state-of-the-art methods using representative
RGB-D SOD scenes, as illustrated in Fig. 8. These scenes
encompass a diverse array of scenarios, ranging from scenes
featuring salient objects replete with intricate details (columns
1st to 5th) to those with larger-sized salient objects (columns
6th and 7th). We also include scenarios with multiple salient
objects (columns 8th and 9th), as well as those with smaller-
sized salient objects (columns 10th to 14th). Upon careful
examination of these results, it becomes evident that FasterSal
excels in several critical aspects. In particular, it demonstrates a
remarkable ability to preserve semantic accuracy, ensuring that
the salient objects are identified. Moreover, FasterSal exhibits
a commendable proficiency in preserving the integrity of fine
edges, a particularly challenging task when dealing with small
objects and complex scenes.

E. Ablation Experiments

To demonstrate the effectiveness of the proposed single-
stream structure FasterSal, proposed modules, especially the
middlewares as well as the weighted loss function, we design
the following experiments, and all experiments are based on
NJU2K and SIP datasets in terms of the mean absolute error
(M), E-measure (Eφ) , F-measure (Fβ) , and S-measure (Sα)

1) Effectiveness of the DA Loss: To comprehensively assess
the impact of hyperparameters α and β on our model’s per-
formance and to gauge the effectiveness of the proposed DA
Loss function, we conducted a series of ablation experiments.
By keeping other parameter values constant, we incrementally
varied the settings of α and β to explore their influence
on model performance. Notably, parameter α plays a crucial
role in emphasizing fine details and small objects during
the model’s learning process. Therefore, we validate on the
boundary maps, which are extracted from the predicted maps

using the method provided by CAVER [17]. Table III presents
our experimental findings, highlighting that when both α and β
are set to 1, the model’s performance peaks. This achievement
underscores the efficacy of our proposed weighting factors,
as they significantly enhance the model’s learning capability
compared to the baseline scenario outlined in the first row,
which solely uses IoU loss. However, overemphasizing fine
details by increasing α may decrease the model’s ability to
capture the overall structure, potentially degrading perfor-
mance. Therefore, our meticulous experimentation leads us to
conclude that setting both α and β to 1 represents the optimal
parameterization.

TABLE III
THE PERFORMANCE OF THE MODEL UNDER DIFFERENT

HYPERPARAMETER COMBINATIONS IN DA LOSS.

Loss
NJU2K SIP

M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑

α=1,β=0 0.026 0.631 0.775 0.947 0.033 0.610 0.759 0.928
α=1,β=1 0.026 0.643 0.790 0.952 0.031 0.622 0.763 0.939
α=2,β=1 0.027 0.629 0.770 0.941 0.034 0.610 0.755 0.923
α=3,β=1 0.027 0.612 0.768 0.935 0.035 0.608 0.753 0.920
α=4,β=1 0.030 0.610 0.761 0.933 0.037 0.600 0.740 0.915

2) Effectiveness of Single-Stream Structure: The core foun-
dation of FasterSal lies in its single-stream architecture. To
thoroughly assess the performance differences between the
single-stream and dual-stream versions of FasterSal, results
are listed in Table IV. In the dual-stream FasterSal (rows 2nd

and 3rd of the table), RGB and depth features are indepen-
dently extracted using MobileNet V3, and then two different
methods of multi-level feature fusion are explored: channel-
wise concatenation (row 2nd) and pixel-wise addition (row
3rd). Additionally, the performance of using only the RGB
modality with our single-stream structure is measured (row
1st), to validate the efficacy of early fusion of the two modal
images. A key observation from the table is row 2nd, where the
channel concatenation fusion method, due to the destruction of
depth information by RGB pretraining, introduces more noise
information, leading to unimproved performance. In contrast,
row 4th (our result) clearly demonstrates the significant gap
between the two approaches.
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TABLE IV
RESULTS USING FASTERSAL WITH DIFFERENT STRUCTURES. THE BEST RESULT VALUES ARE MARKED IN BOLD.

Architecture Params FLOPs
NJU2K SIP NLPR DUT-RGBD STERE

M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑

RGB Input 3.4 0.9 0.042 0.884 0.889 0.934 0.058 0.853 0.851 0.913 0.024 0.894 0.912 0.956 0.033 0.920 0.913 0.955 0.046 0.861 0.873 0.924
Dual-Stream(concat) 6.2 2.1 0.038 0.891 0.899 0.942 0.049 0.879 0.874 0.924 0.025 0.895 0.916 0.958 0.037 0.905 0.907 0.950 0.042 0.870 0.885 0.936

Dual-Stream(add) 6.0 1.8 0.034 0.899 0.906 0.947 0.049 0.881 0.874 0.928 0.022 0.894 0.917 0.960 0.033 0.915 0.913 0.955 0.042 0.870 0.884 0.939

Single-Stream (FasterSal) 3.4 0.9 0.034 0.906 0.908 0.949 0.049 0.870 0.870 0.929 0.022 0.902 0.920 0.960 0.030 0.925 0.918 0.958 0.040 0.875 0.888 0.939

Single-Stream (MoADNet) 3.7 1.0 0.040 0.888 0.909 0.947 0.053 0.868 0.871 0.918 0.024 0.895 0.913 0.955 0.030 0.923 0.911 0.949 0.041 0.871 0.883 0.930

Fig. 9. Performance of the proposed module.

The last row of the Table IV shows the effects of applying
our method on MoADNet. As can be seen, our method still
outperforms the original model on five datasets, which further
demonstrates the superiority of our approach.

3) Impact of Pretrained Backbone on FasterSal: Within
the FasterSal framework, we expand the input of MobileNet
V3 to include four channels and use pretrained parameters
from ImageNet to initialize the fourth channel. To ensure
the effectiveness of this modification within the single-stream
architecture, we explore various initialization methods for
the newly introduced fourth channel. These methods include
zero initialization, one initialization, and Kaiming random
initialization. The experimental results listed in Table V il-
lustrate the impact of different initialization strategies. The
findings suggest that weights pretrained on ImageNet are
more advantageous for our FasterSal framework. Specifically,
compared to the other three initialization methods, using
ImageNet pretrained initialization leads to a 0.97% reduction
in M and achieves improvements of 2.15% in Fβ , 1.12% in
Sα, and 1.45% in Eφ across two datasets.

TABLE V
MODEL PERFORMANCE WITH DIFFERENT INITIALIZATIONS ON THE

EXPANDED FOURTH CHANNEL. THE BEST RESULT VALUES ARE MARKED
IN BOLD.

Initialization
NJU2K SIP

M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑

One Init 0.044 0.882 0.894 0.932 0.066 0.835 0.863 0.918
Zero Init 0.038 0.896 0.903 0.941 0.052 0.858 0.864 0.922

Random Init 0.040 0.888 0.898 0.938 0.067 0.839 0.845 0.896
ImageNet Pretrained 0.034 0.906 0.908 0.949 0.049 0.870 0.870 0.929

4) Effectiveness of Modules: Within the FasterSal frame-
work, we introduce three innovative modules: TEM, OAM,
and ABD, to assess their contributions through a series of abla-
tion experiments. For these experiments, we use MobileNetV3
as the backbone architecture, building upon a basic UNet-
based structure, referred to as ”B.” Our exploration begins by
replacing the UNet decoder with ABD and then systematically
introducing OAM and TEM to discern the impact of each
module on the overall model performance. Additionally, we
incorporate ASPP [64] and PPM [65] into the model for an
ablation analysis of OAM. The comprehensive experimental
results listed in Table VI demonstrate that each module
significantly contributes to the overall performance. With the
addition of ABD and OAM, the model’s Mean Absolute Error
(MAE) on the NJU2K dataset improved from 0.041 to 0.037
and then to 0.035, respectively. Notably, compared to ASPP
and PPM, OAM achieved a more substantial performance
improvement, reducing the average error (M ) by 3% and
increasing the precision by more than 5% in both datasets. This
indicates that the proposed OAM outperforms other feature
enhancement modules.

In Fig. 9, we provide visualizations in the form of class
activation maps, offering insights into the interplay between
encoded features and TEM and OAM. These visualizations
serve to highlight the pivotal role of these intermediary mod-
ules in our study. From these visual outcomes, we can clearly
observe the efficacy of TEM in attenuating low-frequency
information within low-level features, thereby enhancing the
representation of object textures and complex details. Simul-
taneously, OAM effectively discerns the position and edges of
prominent objects by applying different exploration strategies
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TABLE VI
THE EFFICACY OF THE PROPOSED MODULES. THE BEST RESULT VALUES ARE MARKED IN BOLD.

Module Params FLOPs
NJU2K SIP

M ↓ Fβ ↑ Sα ↑ Eφ ↑ M ↓ Fβ ↑ Sα ↑ Eφ ↑

B 2.99 0.5 0.041 0.882 0.895 0.936 0.058 0.847 0.857 0.916
B+ABD 3.09 0.63 0.037 0.896 0.900 0.943 0.054 0.860 0.860 0.919

B+ADB+OAM 3.26 0.66 0.035 0.903 0.907 0.945 0.049 0.864 0.864 0.927
B+ADB+ASPP 3.28 0.69 0.036 0.893 0.902 0.937 0.050 0.873 0.868 0.921
B+ADB+PPM 3.25 0.63 0.039 0.889 0.900 0.931 0.052 0.870 0.869 0.920

FasterSal 3.36 0.88 0.034 0.906 0.908 0.949 0.049 0.870 0.870 0.929

across various spatial contexts. In summary, the introduction of
TEM and OAM significantly enhances the model’s capability
in detecting object textures and precisely locating objects.

V. CONCLUSION

In this study, we present FasterSal, a cutting-edge single-
stream architecture designed for RGB-D salient object detec-
tion. This innovative approach effectively tackles the chal-
lenges of modal inconsistency and excessive parameter counts
common in dual-stream systems. Employing a single stream
encoder capable of handling both RGB and depth image in-
puts, FasterSal skillfully uses pretrained RGB encoders while
integrating the intricate 3D geometric details from depth maps.
The incorporation of a texture enhancement module and a
detail-aware loss significantly refines the model’s ability to
discern edges, emphasizing high-frequency details. Extensive
tests across diverse datasets validate FasterSal’s exceptional
balance between performance and computational efficiency.
With a modest parameter count of just 3.4 million, FasterSal
stands out for its remarkable speed and precision, positioning
it as a highly effective solution for real-world applications.
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